SCHAEFFLER

Early Verification and Testing of a Mechatronic Active Roll Control

Dr. Hua Huang | Schaeffler Technologies AG & Co. KG QTronic User Conference 2019, Berlin

Agenda

1 Background and Motivation

- 2 Virtual Testing with Silver
- 3 Use Case @Schaeffler

1 Background and Motivation

intelligent Active Roll Control (iARC)

iARC system components, integrated in the front axle of an SUV (@Audi, Schaeffler)

Roll control

Passive roll stabilization

Active mechatronic roll control

Comfort

Decoupling: actuator torque front axle $T_{FA} \triangleq 0$

Agility and sportiness

Understeer TFA > TRA

Neutral drivability $T_{FA} = T_{RA}$ Oversteer $T_{FA} < T_{RA}$

Safety

Active mechatronic roll control Passive roll stabilization All rights reserved to Schaeffler Technologies AG & Co. KG, in particular in case of grant of an IP right.

3

1 Background and Motivation

System Functional Test: Status and Challenges

SCHAEFFLER

Test Environment

- Target signals: Test profiles
- External disturbances at coupling rods: 2x hydraulic pulser system
- Vehicle/Chassis communication: Restbus simulation
- Supply voltage: 36V / 48V / 52V
- Ambient temperature: -30°C / 23°C / 80°C

Challenges

- Higher cost (compared with virtual testing)
- Bug-fix of unexpected errors brings more time consuming on test bench
- Test scheduling depends on the availability of the bench

Motivation

- Virtual testing on PC
- Reduce cost on test bench
- Increase the test coverage
- Early verification and testing

Agenda

- **1** Background and Motivation
- **2** Virtual Testing with Silver
- 3 Use Case @Schaeffler

Workflow of Virtual Testing

- Virtual simulation platform in Silver
- Test assignments are synchronized with database, i.e. PTC Integrity
- Virtual simulation platform is parameterized by software release, parameter container, actuator type and so on
- Post-processing: e.g. boundary values
- Test report shown in the end with "pass/fail" results

2 Virtual Testing with Silver

Virtualization

SCHAEFFLER

2 Virtual Testing with Silver

Virtualization of Physical Models

SCHAEFFLER

1

· [=

44

Simulink

iARC (actuator component)

2 Virtual Testing with Silver Virtualization of ECU-SW

Options

- MATLAB/Simulink modules in MiL (Model-in-the-Loop)
- C code in SiL (Software-in-the-Loop)
- Delivered Hex file (binary containing data and program code)

Status

- SW is developed together with another supplier
- Hex file is delivered from SW department and verified against specification
- Use the identical SW as the one on test bench

Virtualization

Chip simulation

2 Virtual Testing with Silver Virtual ECU with Chip Simulation

SCHAEFFLER

Principle of chip simulation

Mapping the instruction set of the target processor to the instruction set of the host processor on PC

Use case of chip simulation

- Only application SW
- Basic SW is verified in HiL (Hardware-in-the-Loop)

2 Virtual Testing with Silver

Virtual ECU with Chip Simulation

Needed files

ECU (here: Autosar)

- Hex file: Program code and data of the functions to run
- A2L file: Describes the inputs, outputs (MEASUREMENT elements) and parameters (CHARACTERISTIC and shared AXIS_PTS elements)
- MAP file: Maps function names to ECU memory addresses
- **DCM file** (for calibration): Calibration data to be flashed

SCHAEFFLER

01	#
02	# Spec file for tcbuild.exe and Silver module tcdebug.dll
03	#
04	
05	# Used files
06	hex_file(iARC_SW_H03.A.V01_R0.2.0.167.hex, TriCore_1.6.1)
07	<pre>map_file(iARC_SW_H03.A.V01_R0.2.0.167.map)</pre>
08	a2l_file(iARC_SW_H03.A.V01_R0.2.0.167_rear.a2l)
09	
10	# Specification of startup code
11	chip_config(STEP_SIZE, 0.001) # base clock tick in milli seconds
12	<pre>chip_config(TEXT_START, 0xa0000000) # 4 bytes for Silver internal use</pre>
13	
14	# List of functions to run, in order of execution
15	task_initial(ATC_TaskInit, 0)
16	task_periodic(ATC_step, 2, 0)
17	
18	a2l_function_inputs(ATC_Gen)
19	a2l_function_outputs(ATC_Gen)

Agenda

- **1** Background and Motivation
- 2 Virtual Testing with Silver
- **3** Use Case @Schaeffler

3 Use Case @Schaeffler

Early Software Verification and System Testing

SCHAEFFLER

1. Early system testing

Functional testing in system context

2. Early software verification

- When SW-Build is deployed
- Move selected tests from HiL
- Component testing

3. Pre-calibration

Status Quo

SCHAEFFLER

46 % IDs of system functional test can be verified in virtual environment

Virtual testing has a good correlation with measurements

Enlarge test strategy in a cost-effective way

Has been established for more than one project, and is also planned for other chassis mechatronic systems

Continuing improvement of physical models to increase test scenarios

SCHAEFFLER

Dr. Hua Huang Schaeffler Technologies AG & Co. KG