

Reflective MMI

Introduction

Reflective MMI

BeamPROP: Forward and backward propagation

FullWAVE: Reflective region simulation

Conclusions

Introduction

- Synopsys RSoft Device tools provide a wide spectrum of photonics component simulation software, each solving a specific kind of problems
- Many problems are too big or too complex to be simulated by a single tool
- They can be decomposed into a number of smaller problems and solved by different tools

Reflective MMI

Synopsys°

Reflective Multi-Mode Interference (MMI) Devices

 MMIs are a common device in photonics integrated circuits (PICs)

 Conventional MMIs are usually very long, making integration onto a PIC difficult

 Reflective MMIs with etched TIR mirrors save space for integration

SYNOPSYS[®]

Combining BeamPROP and FullWAVE

- MMI structure is too big for FullWAVE, esp. for 3D
- BeamPROP cannot
 handle facet reflection
- Combining BeamPROP for the MMI region and FullWAVE for the facets is the best approach

MMI top view of MMI structure (left), cross-section (right)

BP-FW Simulation methodology

Kleijn, Emil, Meint K. Smit, and Xaveer JM Leijtens. "Multimode interference reflectors: a new class of components for photonic integrated circuits." Lightwave Technology, Journal of 31.18 (2013): 3055-3063.

User-Simulator: Python Script

 A python script is written to automate the BP-FW-BP simulation flow

RSoft CAD Layout - BeamPROP - [Run4.ind]

- • ×

SAUDLSA2

cmd1='%s launch_type=LAUNCH_GAUSSIAN mode_set=0 launch_width=Win launch_height=H_InP_n+H_InGaAsP/2 Lin=1000 domain_max=0 domain_min=-1000 prefix=mode_BP'%(rspy.spawn(cmd1)

BPM simulation from input port to the end of MMI and store the results in <prefix>
cmd2='%s launch_file=mode_BP.m00 domain_max=L_MMI domain_min=-3 prefix=%s_BP1'%(base_cmd_BP,prefix)
rspy.spawn(cmd2)

FDTD simulation for triangle section

cmd3='%s launch_file=%s_BP1_ex.fld domain_min=L_MMI-step_size*3 launch_position_z=L_MMI domain_max=L_MMI+Ltri+0.1 prefix=%s_FW'%(base_cmd_FWcluster,prefix rspy.spawn(cmd3)

Backward BPM simulation from end of MMI to the beginning of input port and monitor the output overlap with input waveguide mode cmd4='%s launch_file=%s_Fw_bpm.dat bpm_backward_auto=1 domain_min=L_MMI-3*step_size domain_max=-3 prefix=%s_BP2'%(base_cmd_BP,prefix,prefix) rspy.spawn(cmd4)

BeamPROP + FullWAVE Simulation

MOST Scan

• The output power vs. MMI length can be scanned using the MOST optimization and scanning tool

RSoft MOST Parameters				
Control Contro	Utastetections Output Prefix: mostmp Enable fustering mostmp # process 2 Skip master Settings # threads/proc: 1 Wetrics Vetrics Active Type Low High Incr. Y Y Fixed inc 33	Save settings OK Test metric Cancel Help Resume Post-process		
Available symbols: Add Ax Delete Fixed steps	Specify: Low, High and Steps fields.	LIP Down	0.8 	

Comparing hybrid solution vs 100% FDTD Result

- FullWAVE can be used to simulate the entire structure.
- The results are similar, but takes about 20 hours on a 8-core computer with ~20G RAM for ONE simulation.

Ex @ Freq=0.645161μm⁻¹ [DFT (0,0,20)]

Sensitivity Study

 Effect of etching depth (InP_n layer thickness) can be explored using MOST

Conclusions

- Synopsys provides a wide spectrum of photonic simulation software, covering devices, circuits, and systems
- Each simulation tool has its own application scope, comes with specific strength and weakness, and solves different problems
- A big and complex problem usually can be decomposed into a number of smaller and simpler problems
- Each smaller problem can be solved by a specific tool, whichever is more efficient and effective

Thank You